

First Round: February 24, 2018 at Regional Testing Centers Second Round: April 14, 2018 at The University of Alabama at Birmingham

COMPREHENSIVE EXAM

Construction of this test directed
by
Miranda Bowie and Ashley Johnson, The University of North Alabama

INSTRUCTIONS

This test consists of 50 multiple choice questions. The questions have not been arranged in order of diculty. For each question, choose the best of the ve answer choices labeled A, B, C, D and E.

The test will be scored as follows: 5 points for each correct answer, 1 point for each question left unanswered and 0 points for each wrong answer. (Thus a \perfect paper" with all questions answered correctly earns a score of 250, a blank paper earns a score of 50, and a paper with all questions answered incorrectly earns a score of 0.)

Random guessing will not, on average, either increase or decrease your score. However, if you can eliminate

Why Major in Mathematics?

What sorts of jobs can I get with a mathematics degree? Examples of occupational opportunities available to math majors:

Market Research Analyst Cryptanalyst Mathematician
Air Tra c Controller Professor Meteorologist
Climate Analyst Pollster Medical Doctor

Estimator Population Ecologist Lawyer
Research Scientist Operations Research Actuary
Computer Programmer Data Mining Statistician

Where can I work? What sorts of companies hire mathematicians? Well just to name a few...

U.S. Government Agencies such as the National Center for Computing Sciences, the National Institute of Standards and Technology (NIST), the National Security Agency (NSA), and the U.S. Department of Energy.

Government labs and research o ces such as Air Force O ce of Scienti c Research, Los Alamos National Laboratory, and Sandia National Laboratory.

Engineering research organizations such as AT&T Laboratories - Research, Exxon Research and Engineering, and IBM Research.

Computer information and software rms such as Adobe, Google, Mentor Graphics, Microsoft, and Yahoo Research.

Electronics and computer manufacturers such as Alcatel-Lucent, Hewlett-Packard, Honeywell, Philips Research, and SGI.

Aerospace and transportation equipment manufacturers such as Boeing, Ford, General Motors, and Lockheed Martin.

Transportation service providers such as FedEx Corporation and United Parcel Service (UPS).

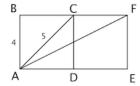
Financial service and investment manangement rms such as Citibank, Morgan Stanley, and Prudential.

A Mathematics Major isn't just for those wanting to be Mathematicians!

The top scoring major on the Law School Entrance Exam (LSAT) is Mathematics (Source: Journal of Economic Education)

Mathematics is also a top 5 scoring major on the Medical School Entrance Exam (MCAT) (Source: American Institute of Physics)

Study in the eld of mathematics o ers an education with an emphasis on careful problem solving, precision of thought and expression, and the mathematical skills needed for work in many other areas. Many important problems in government, private industry, and health and environmental elds require mathematical techniques for their solutions. The study of mathematics provides species analytical and quantitative tools, as well as general problem-solving skills, for dealing with these problems. The University of North Alabama of ers an undergraduate degree in Mathematics and has many great things to of er, including a new


1.	The measures of the largest inter		s of a hexagon are x ,	2x, 3x, 3x, 4x, and 5	x. Find the measure of		
	(A) 20	(B) 100	(C) 120	(D) 160	(E) None of these		
2.	2. There is exactly one integer a for which the polynomial $f(x) = ax^4 + 15x^3 + 5x^2 + 10x$ a is div by $x + 3$. Find the sum of the value a and the coefficient on the x term of the quotient.						
	(A) 10	(B) 16	(C) 20	(D) 24	(E) None of these		
3.	In the triangle shown, the measure of $\backslash BAD = 38$, $AB = AC$, and $AD = AE$. Find the measure of $\backslash CDE$.						
	(A) 19	(B) 27 (C)	38 (D) 52	(E) None of the	Se E		
4.	Find the sum of the solutions to the equation 16^x $7(4^x) = 10$.						
	(A) log ₄ 7	(B) $\log_4 10$	(C) log ₁₆ 7	(D) log ₁₆ 10	(E) None of these		
5.		of a number <i>n</i> is a			mber itself. Recall that /hich of the following is		
	(A) 16	(B) 20	(C) 22	(D) 28	(E) 32		
6.	Find the number $y + jxj = 3$ $jxjy + x^3 = 0$, with <i>a; b</i> real numbe	ers, to the system of e	quations		
	(A) 1	(B) 2	(C) 3	(D) 5	(E) None of these		
7.	A contest has ten entries. How many ways are there to choose rst, second, and third place, along with two unordered honorable mentions?						
			11101131				
	(A) 252	(B) 2520	(C) [15,120]	(D) 30,240	(E) None of these		
8.		(B) 2520	(C) [15,120]	(D) 30,240 e equation (1 2x)(x	. ,		
8.		(B) 2520	(C) [15,120]		. ,		
8. 9.	Find the absolution (A) 3.5	(B) 2520 te value of the sum (B) 5:5	(C) 15,120 of all solutions to the	e equation (1 2 <i>x</i>)(<i>x</i> (D) 13:5	(a + 6) = 18.		
	Find the absolut (A) 3.5 Which of the following the follow	(B) 2520 te value of the sum (B) 5:5	(C) 15,120 of all solutions to the (C) 12 one-to-one on its dor	e equation (1 2 <i>x</i>)(<i>x</i> (D) 13:5 main?	(a + 6) = 18.		
	Find the absolution (A) 3.5 Which of the form (A) $f(x) = x^3$	(B) 2520 te value of the sum (B) 5.5 Illowing functions is x (B) $f(x) = x$	(C) $15,120$ of all solutions to th (C) 12 one-to-one on its dor $x^2 + 2$ (C) $f(x) = e^x$	e equation (1 2 <i>x</i>)(<i>x</i> (D) 13:5 main?	f(x) = 18. (E) None of these $f(x) = x + \frac{1}{x}$		
9.	Find the absolution (A) 3.5 Which of the form (A) $f(x) = x^3$	(B) 2520 te value of the sum (B) 5.5 Howing functions is x (B) $f(x) = x$ gers are excluded fr	of all solutions to the (C) 12 one-to-one on its dor $(C^2 + 2 (C) f(x) = e^x$ om the solution set o	e equation $(1 2x)(x (D) 13.5$ main? $f(x) = \frac{p}{x}$	f(x) = 18. (E) None of these $f(x) = x + \frac{1}{x}$		
9.	Find the absolution (A) 3.5 Which of the following (A) $f(x) = x^3$ How many integration (A) Zero	(B) 2520 te value of the sum (B) 5.5 Howing functions is x (B) $f(x) = x$ gers are excluded fr (B) One (of all solutions to the (C) 12 one-to-one on its dor $(C^2 + 2 (C) f(x) = e^x$ om the solution set o	e equation $(1 2x)(x (D) 13.5$ main? $f (D) f(x) = \frac{p}{x+1}$ f the inequality $\frac{3x}{x}$ In nitely Many	$f(x) = 18.$ (E) None of these $f(x) = x + \frac{1}{x}$ $f(x) = x + \frac{1}{x}$		

- 12. The rational expression $\frac{5x^2}{x^3+2x^2+5x+10}$ is equivalent to the sum $\frac{A}{x+2}+\frac{Bx+C}{x^2+5}$. Find the product ABC.
 - (A)36
- (B) 495
- (C) 0
- (D) 30
- (E) None of these
- 13. In the gure shown, ABCD and DCFE are rectangles, with AB = 4, AC = 5, and BC = CF. What is the perimeter of 4ACF?

- **(B)** $8 + 5^{D} \overline{2}$
- (C) $9 + 4^{0}\overline{5}$

(E) None of these

- 14. Find the maximum value of the function $f(x) = \frac{10}{4x^2 + 12x + 13}$.
 - (**A**) 2
- (B) $\frac{1}{4}$ (C) $\frac{10}{13}$
- (D) $\left[\frac{5}{2}\right]$
- (E) None of these
- 15. The value of log 3:76 to four decimal places is 0:5752. Find the value of log 37:6.
 - (**A**) 1:5752
- (B) 3:627
- **(C)** 5:752
- **(D)** 10:5752
- (E) None of these
- **16.** Suppose for all positive integers n, we have $f(4 + n^2) = an + 2$ and $f(9 n^2) = 3n b$ for some numbers a and b. Then the value of f(13) is
 - (A)
- (B) 3
- (C

31.	Suppose $f(x)$ is a degree six polynomial with positive leading coe cient, such that $f(2) = 1$. What is the minimum number of real roots of the polynomial $f(x)$?						
	(A) 0	(B) 1	(C) 2	(D) 4	(E) None of these		
32.	Find the area of the region enclosed by the graphs of the functions of $f(x) = jxj$ and $g(x) = 4$.						
	(A) 4	(B) 8	(C) 16	(D) 32	(E) None of these		
33.	Find the largest integer value of n , with 0 n 100, so that $(1 + i^{D} \overline{3})^{n}$ is a real number.						
	(A) 100	(B) 99	(C) 98	(D) 97	(E) None of these		
34.							

41. In the gure shown, points A, B, C, D and E all lie on the circle, point O is the center of the circle, and both \overline{AD} and \overline{CE} go through point O. Angle $\backslash BEC$ has measure 28 , and $\backslash ADB$

48. Find the value of the continued fraction

$$\frac{1}{2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3 + \frac{1}{2 + \cdots}}}}}$$

- (B) $\frac{3}{2}$ (C) $\frac{1 + \frac{\rho_{\overline{29}}}{14}}{14}$ (D) $\frac{1 + \frac{\rho_{\overline{29}}}{2}}{2}$
- (E) None of these
- **49.** Find the equation of the tangent line to the circle $(x 1)^2 + (y + 5)^2 = 25$ at the point (4; -1).

 - (A) $y = \frac{3}{4}x$ 5 (B) $y = \frac{3}{4}x + 2$ (C) $y = \frac{5}{6}x$ 5 (D) $y = \frac{5}{6}x$ $\frac{13}{3}$ (E) None of these

- 50. A right square pyramid with a base area of 16 and a height of 6 is cut halfway up parallel to the base.